Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model

نویسندگان

  • Baijun Tian
  • Brian J. Soden
  • Xiangqian Wu
چکیده

[1] Global high-resolution (3-hourly, 0.1 0.1 longitude-latitude) water vapor (6.7 mm) and window (11 mm) radiances from multiple geostationary satellites are used to document the diurnal cycle of upper tropospheric relative humidity (UTH) and its relationship to deep convection and high clouds in the whole tropics and to evaluate the ability of the new Geophysical Fluid Dynamics Laboratory (GFDL) global atmosphere and land model (AM2/LM2) to simulate these diurnal variations. Similar to the diurnal cycle of deep convection and high clouds, coherent diurnal variations in UTH are also observed over the deep convective regions, where the daily mean UTH is high. In addition, the diurnal cycle in UTH also features a land-sea contrast: stronger over land but weaker over ocean. UTH tends to peak around midnight over ocean in contrast to 0300 LST over land. Furthermore, UTH is observed to lag high cloud cover by 6 hours, and the latter further lags deep convection, implying that deep convection serves to moisten the upper troposphere through the evaporation of the cirrus anvil clouds generated by deep convection. Compared to the satellite observations, AM2/LM2 can roughly capture the diurnal phases of deep convection, high cloud cover, and UTH over land; however, the magnitudes are noticeably weaker in the model. Over the oceans the AM2/LM2 has difficulty in simulating both the diurnal phase and amplitude of these quantities. These results reveal some important deficiencies in the model’s convection and cloud parameterization schemes and suggest the lack of a diurnal cycle in SST may be a shortcoming in the boundary forcing for atmospheric models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause

[1] There are some interesting day versus night differences in the water vapor and carbon monoxide concentrations near the tropopause over tropical land and ocean from 4 years of EOS Microwave Limb Sounder (MLS) observations. To interpret these differences, the diurnal cycle of deep convection reaching near tropical tropopause summarized from a decade of tropical rainfall measuring mission (TRM...

متن کامل

Influences of ENSO SST Anomalies and Winter Storm Tracks on the Interannual Variability of Upper-Troposphere Water Vapor over the Northern Hemisphere Extratropics

This study examines the interannual variability of winter upper-troposphere water vapor over the Northern Hemisphere using the National Aeronautics and Space Administration Water Vapor Project, the International Satellite Cloud Climatology Project data, and the European Centre for Medium-Range Weather Forecasting reanalysis. The El Niño–Southern Oscillation related tropical sea surface temperat...

متن کامل

A statistical analysis of the influence of deep convection on water vapor variability in the tropical upper troposphere

The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong ...

متن کامل

Isotopic composition of stratospheric water vapor: Implications for transport

We develop a series of models of transport in the upper tropical troposphere in order to explain the observed abundance and isotopic composition of stratospheric water vapor. We start with the Rayleigh fractionation process and add the effects of mixing and recirculation of stratospheric air through the upper troposphere. We compare our measurements with model calculations for a range of input ...

متن کامل

The influence of convective outflow on water vapor mixing ratios in the tropical upper troposphere An analysis based on UARS MLS measurements

The source of increased water vapor mixing raregions of convective outflow. These studies dealt with varitios over the central and eastern tropical Pacific region during ations in relative humidity over a broad region of the tropthe 1992 E1 Nifio event is examined using measurements of ical upper troposphere (i.e., 200-500 hPa). Presently, it is upper tropospheric water vapor provided by the Mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004